Survival of Shiga toxin-producing and generic *Escherichia coli* during ripening of semi-hard raw milk cheese

Silvio Peng¹,², Wolfgang Hoffmann³, Wilhelm Bockelmann⁴, Jörg Hummerjohann², Roger Stephan¹, Philipp Hammer³

1 Institute for Food Safety and Hygiene, University of Zurich
2 Agroscope Liebefeld-Posieux, Bern
3 Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut Kiel
4 Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel
STEC in raw milk cheese

• From cattle to milk to cheese

• Raw milk cheese associated STEC outbreaks were reported\(^1\)

• STEC prevalence in raw milk cheese in Switzerland
 • detection rate (PCR): 5.7 % of 1,502 raw milk cheese samples\(^2\)

• Higher risk potential recognized for\(^3\)
 • soft and semi-soft cheeses
 • uncooked cheeses

Spiking of semi-hard raw milk cheese

- Three STEC and two generic *E. coli* strains
 - strains isolated from raw milk cheese
 - each strain is quantified separately*
 - two spiking levels (10\(^1\) and 10\(^3\) CFU/ml)
- Semi-hard raw milk cheese similar to Swiss type
 - two cheese types (cooking temperatures: 40°C and 46°C)
 - two cheeses are produced from one batch of 50 l spiked raw milk
 - two replications of each combination
- Sampling during production and 16 week ripening period

* selectiv media based on inherit properties (e.g. sugar fermentation and antibiotic resistances)
Cheese production

- Raw milk used tested negative after enrichment for presence of
 - target strains
 - stx genes
- Physicochemical parameters
 - in accordance with cheese recipe
 - similar in spiked and unspiked cheeses
 - acidification stronger in 40°C cooked cheeses
 - (pH minima at 5.0 and 5.2)
- Additional flora incl. starter cultures similar in all cheeses
Strain characteristics

<table>
<thead>
<tr>
<th>Strain</th>
<th>Serotype</th>
<th>Virulence factors</th>
<th>RpoS-phenotype</th>
<th>Thermal inactivation</th>
<th>Oxidative AR<sup>a</sup> system</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>stx<sub>1</sub> stx<sub>2</sub> eae<sup>b</sup> hlyA<sup>c</sup></td>
<td>(catalase test)</td>
<td>(55 °C, 15 min)</td>
<td>(Survival, 2 h, pH 2.5)</td>
</tr>
<tr>
<td>K356</td>
<td>O2:H27</td>
<td>- + - +</td>
<td>+</td>
<td>- 1.52 log<sub>10</sub></td>
<td>5.2 %</td>
</tr>
<tr>
<td>K303</td>
<td>O9:H21<sup>d</sup></td>
<td>- - - -</td>
<td>-</td>
<td>- 1.89 log<sub>10</sub></td>
<td>0.6 %</td>
</tr>
<tr>
<td>N09-1208</td>
<td>O26:H11</td>
<td>+ - + +</td>
<td>+</td>
<td>- 1.90 log<sub>10</sub></td>
<td>7.9 %</td>
</tr>
<tr>
<td>K331/4</td>
<td>O91:H21</td>
<td>+ + - +</td>
<td>+</td>
<td>- 1.78 log<sub>10</sub></td>
<td>12.6 %</td>
</tr>
<tr>
<td>FAM21843</td>
<td>O178:H12</td>
<td>- - - -</td>
<td>+</td>
<td>- 0.04 log<sub>10</sub></td>
<td>27.6 %</td>
</tr>
</tbody>
</table>

^aAcid resistance, ^bintimin, ^chemolysin A, ^dphenotypically non-motile.

K356: serotype that showed high prevalence during monitoring program¹

K303: potential defect in stress response

N09-1208: serotype belonging to the „gang of five“

K331 / 4: serotype associated with severe disease

FAM21843: high stress resistance to acidic and heat stress

1) Zweifel et al. 2010
Increase of \textit{E. coli} during production

- Increase of app. $3.5 \log_{10}$ CFU/ml observed at both spiking levels
- „Entrapment“ of the bacteria in the curd (app. factor 10)
- Growth of the \textit{E. coli} strains
Survival of *E. coli* (low spiking level)

- Significant differences between the strains in both cheese types
- In six of the 16 cheeses STEC present at ≥ 10 CFU/g at the end of ripening
- Detection of *stx* after enrichment in all but one sample after 16 weeks

Average counts of the *E. coli* strains in 40°C cooked cheeses

(no significant differences were observed between the two cheese types)
Survival of *E. coli* (high spiking level)

- Significant differences between the strains in both cheese types
- Detection of *stx* after enrichment in all but one sample after 16 weeks

Average counts of the *E. coli* strains in 40°C cooked cheeses

(no significant differences were observed between the two cheese types)
Summary

- Significant differences in survival of the *E. coli* strains in raw milk cheese
- Generic *E. coli* survive in higher counts than the STEC strains
- In six of 16 cheeses made at low spiking level STEC were present at ≥ 10 CFU/g at the end of ripening

Even low STEC counts in raw milk cheese are a matter of concern due to the low infectious dose of highly pathogenic STEC